
Acta Cryst. (2001). A57, 369±377 Gertsman � CSL triple junctions 369

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 22 November 2000

Accepted 8 January 2001

# 2001 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Geometrical theory of triple junctions of CSL
boundaries

V. Y. Gertsman

Pacific Northwest National Laboratory, PO Box 999, P8-16, Richland, WA 99352, USA.

Correspondence e-mail: valery.guertsman@pnl.gov

When three grain boundaries having misorientations generating coincidence site

lattices (CSLs) meet at a triple junction, a common (triple-junction) CSL is

formed. A theory is developed as a set of theorems establishing the relationships

between the geometrical parameters of the grain-boundary and triple-junction

CSLs. Application of the theory is demonstrated in detail for the case of the

cubic crystal system. It is also shown how the theory can be extended to an

arbitrary crystal lattice.

1. Introduction

Triple junctions of grains (and, consequently, of grain

boundaries) have been known to researchers ever since it was

realised that most crystalline materials exist in the poly-

crystalline form. Yet only recently triple junctions have

attracted a considerable amount of attention and it has been

recognized that they are not just geometrical locations where

grain boundaries meet but that the triple junction should be

considered as a separate structural element of polycrystals

that can considerably in¯uence material properties [see e.g.

the Interface Science Special Issue on Triple Junctions (Gott-

stein et al., 1999)]. Progress in this ®eld is hindered, however,

by the lack of an accredited crystallographic theory that would

help analyze experimental data and could serve as a frame-

work for phenomenological models. In the case of grain

boundaries, the coincidence site lattice theory, CSL (e.g.

Grimmer et al., 1974), has provided such a crystallo-

geometrical framework. Even though considerable dif®culties

exist in direct correlation of the CSL approach with physical

properties of grain boundaries (see e.g. Sutton & Balluf®, 1987

and Gertsman & Szpunar, 1999), the CSL model has proven to

be an extremely useful tool in advancing our understanding of

the grain-boundary structure and properties. The present

work is an effort to provide such a tool for triple junctions. In

this paper, we will be dealing only with the triple junctions of

unstressed crystals. Very interesting junction structures can be

formed if elastic distortions in the grains are allowed, which

could lead e.g. to junction disclinations (see Dimitrakopulos et

al., 1999 and Gertsman, 1999). However, this does not change

the fact that a geometric theory of unstressed triple junctions

can serve as a basis for analyzing triple-junction defects just as

the perfect crystal lattice is a framework for analyzing crystal-

lattice defects. The reason the crystallographic approach to

triple junctions lags behind the grain-boundary crystal-

lographic theories may be that the object is much more

complex. King (1999) has shown that, in a general case, the

triple junction has 11 macroscopic and 15 microscopic degrees

of freedom as compared to 5 and 3, respectively, for the grain

boundary. Microscopic degrees of freedom are not the subject

of geometric theories and we do not consider grain-boundary

planes in this study, either. Nevertheless, we are still left with

six rotational degrees of freedom for the triple junction, while

the grain boundary has only three.

The paper is constructed in the following way: x2 gives a

very brief overview of what has been known to date on the

issue. The theory is formulated as a set of theorems for the

cubic crystal system in x3. Application of the theory to

describe geometrical parameters of triple junctions of grains

with the cubic lattice is described in x4 and some special cases

are discussed in x5. Finally, x6 demonstrates how the theory

can be generalized for an arbitrary crystal lattice.

2. Background

The particular class of triple junctions we are considering in

the current work are those where three CSL boundaries meet.

It has been recognized for quite some time that in such a case a

common lattice of sites common to all three adjoining lattices

(triple-junction CSL) should exist and that there must be a

relationship among the parameters of the three grain-

boundary CSLs (e.g. Andreeva et al., 1982; Kopezky &

Fionova, 1982; Perevezentsev et al., 1982). The commonly

accepted parameter characterizing a CSL is the multiplicity

factor, the so-called reciprocal density of coincident sites, �
(e.g. Grimmer et al., 1974). A geometrical theory must give the

� combination rule for the boundaries comprising the triple

junction as well as an algorithm to calculate � of the triple-

junction CSL, which we denote as �TJ.

There is a widely spread misconception concerning the �
combination rule: in most publications, it is assumed that in

the triple junction one of the �'s (e.g. �3) is always greater

than the other two and the formula is

�3 � �1�2; �1�
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where the subscripts refer to the grain boundaries. However,

this formula re¯ects only a particular solution of the rela-

tionship. General solutions for the cubic system were

suggested in the Russian (Andreeva et al., 1982; Kopezky &

Fionova, 1982) and Japanese (Miyazawa et al., 1983) literature,

but have gone almost unnoticed.

The former approach can be summarized as follows. The

rotation matrix for a CSL misorientation between two cubic

crystal lattices can be represented as

R � 1

�
fag � 1

�

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
@

1
A; �2�

where all aij are co-prime (i.e. having no common divisor

except 1) integers. The formula for the � combination rule at a

CSL triple junction can be written as

�3 � �1�2=�; �3�
where � is the greatest common divisor (g.c.d.) of the matrix

fbg � fag1fag2.

On the other hand, Miyazawa et al. (1983) suggested that

�3 � �1�2=�
2; �4�

where � is a common divisor of �1 and �2.

It will be shown in the next section that the two statements

are both true, which implies that the g.c.d. of the elements of

the matrix {b} is always the square of a common divisor of �1

and �2.

It should be noted, however, that in the above-cited papers

it was still implied that in the triple junction one of the �
values is always equal to 1, and the proposed relationships

were designed so that the general formula be applicable to all

boundaries in the junction, not just for the calculation of the

largest �. To the best of the author's knowledge, it had not

been until 1995 when it was ®rst shown (Gertsman & Tangri,

1995) that triple junctions where none of the �'s are equal to 1

do exist. Hereafter, we shall call such a triple junction `� 6� 1

junctions'. That paper gives a �9±�9±�9 junction as an

example. The next year, the possibility of a �9±�9±�9 junc-

tion was shown by Dimitrakopulos & Karakostas (1996) on

the basis of symmetry considerations, but they still wrote that

in this case `the well known CSL multiplication rule [meaning

formula (1)] is not valid'. The same year, Miyazawa et al.

(1996) expanded their earlier hypothesis and demonstrated

the possibility of many � 6� 1 triple junctions in the cubic

crystal system. However, they offered the proof of formula (4)

only for a particular case and conjectured that it was generally

applicable on the basis of a limited number of numerical

calculations. Recently, Owusu-Boahen & King (2000) have

suggested that, if � 6� 1, the triple junction may have some

special properties. In their analysis, they have implied that

such junctions have all three � 6� 1, even though they did not

mention this explicitly in their paper. Of course, in every triple

junction � 6� 1 for at least one of the boundaries. So, we

emphasize that the term `� 6� 1 junction' refers only to the

cases when none of the �'s are equal to 1.

The question about the coincident site density of the triple-

junction CSL has remained moot. Perevezentsev et al. (1982)

showed that �TJ � max��1;�2;�3�, but they implied that

formula (1) was always valid; therefore, their solution refers

only to � � 1 junctions. Miyazawa et al. (1996) put forth a

conjecture that �TJ � ��1�2�3�1=2, but they did not offer any

proof of this relationship.

3. Primary theorems

Even though equation (3) ®rst appeared almost two decades

ago, to the best of the author's knowledge a thorough proof of

it has never been published. Perhaps it looked obvious to the

original authors; however, the � combination rule is still

continuing to be quoted simply as �3 � �1�2. Therefore, it

seems necessary to show how the result can be obtained.

Theorem 1. � combination rule for the cubic crystal system.

Let two of the boundaries in the triple junction have CSL

misorientations with the reciprocal densities of coincident

sites �1 and �2. Rotation matrices of these misorientations

can be represented in the form of equation (2), i.e.

R1 �
1

�1

faijg1 and R2 �
1

�2

faijg2; �5�

where {aij} are integral irreducible matrices. Then the third

grain boundary in the junction has a CSL misorientation

described by

�3 � �1�2=�12; �6�
where �12 is the g.c.d. of the matrix

fbijg � faijg1faijg2: �7�
For three boundaries meeting at a triple junction, the

following equation is valid when grain orientations are

determined in the same reference system:

R1R2R3 � I; �8�
where I is the identity matrix.

From (8),

R1R2 � Rÿ1
3 : �9�

The inverse matrix Rÿ1
3 describes an equivalent variant of the

same misorientation as R3, i.e. the third misorientation can be

found as a product of the ®rst two misorientations. It actually

does not matter which matrix is considered to be direct and

which inverse. Therefore, formula (9) is often written as

R1R2 � R3: �9a�
In the cubic crystal system, the rotation matrix is orthonormal;

therefore, the inverse and transpose matrices are the same, i.e.

Rÿ1 � RT .

In the expanded form, equation (9) is expressed as

1

�1

faijg1

1

�2

faijg2 �
1

�3

faijgT3 : �10�

Multiplication of the left-hand side of (10) gives



1

�1

faijg1

1

�2

faijg2 �
1

�1�2

fbijg: �11�

The {bij} matrix elements are calculated as

bij � �ai1�1�a1j�2 � �ai2�1�a2j�2 � �ai3�1�a3j�2: �12�
Because R1 and R2 are CSL rotations, all (aij)1 and (aij)2 are

integers. Then all bij are integers as well. Therefore, all

components of matrix Rÿ1
3 (and, consequently, of R3) are

rational and it describes a CSL rotation. Components of each

of the matrices {aij}1 and (aij}2 do not have common divisors.

This does not, however, mean that all bij do not have a

common divisor. Simply speaking, it is possible to construct

nine integers having a common divisor out of two sets of nine

co-prime integers according to (12). If matrix {bij} is irre-

ducible, then from (10) and (11) it follows that bij � faijgT3 and

�3 � �1�2. If the components of matrix {bij} do have a

common divisor, �12, then from (10) and (11) we obtain

faijgT3 � fbijg=�12 and �3 � �1�2=�12.

Corollary. � combination rule. For a triple junction of three

CSL boundaries between cubic lattice crystals,

�12�13�23 � �1�2�3: �13�
This simply follows from

�12�3 � �1�2; �13�2 � �1�3; �23�1 � �2�3: �14�
Possible values of � can be found using the following theorem.

Theorem 2. � theorem. In the cubic crystal system, �12 is the

square of a common divisor of �1 and �2 (correspondingly,

�1j�1=2
13 , �3j�1=2

13 and �2j�1=2
23 , �3j�1=2

23 ).1

As mentioned in x2, this proposition was ®rst put forward by

Miyazawa et al. (1983). Later, Miyazawa et al. (1996) proved it

for a particular case when both generating misorientations can

be represented by 180� rotations about a common axis and

from numerical calculations conjectured it to be valid in a

general case. Here we give a more general proof of the

theorem.

First, let us show that in the cubic crystal system � is a

square of an odd integer. That � is odd simply follows from the

fact that all three �'s in formula (3) are odd integers. To show

that it is a square, let us use the vector-quaternion description

of misorientations (Gertsman, 1989, 1990). Any CSL mis-

orientation can be described by a Rodrigues±Gibbs vector

G � ��k; l;m�=n �15�
or quaternion

�k; l;m; n�; �16�
where k, l, m, n are co-prime integers. For the cubic system,

� � 1.

This quaternion describes the rotation about the axis

[k, l, m] by the angle � such that

tan2��=2� � �k2 � l2 �m2�=n2 �17�
and

� is the greatest odd factor of �k2 � l2 �m2 � n2�: �18�
Consider a product of two CSL misorientations. From the

multiplication law for orthonormal quaternions (e.g. Grimmer,

1974a), one obtains

�k1; l1;m1; n1��k2; l2;m2; n2� � �K;L;M;N�; �19�
where

K � k1n2 � n1k2 � l1m2 ÿm1l2

L � m1k2 ÿ k1m2 � n1l2 � l1n2

M � k1l2 ÿ l1k2 � n1m2 �m1n2

N � n1n2 ÿ k1k2 ÿ l1l2 ÿm1m2:

�19a�

Even though both generating quaternions contain co-prime

coef®cients, the product quaternion may still be reducible. Let

� be the greatest common odd divisor of (K, L, M, N). Then,

�3 is the greatest odd factor of �K2 � L2 �M2 � N2�=�2:

�20�
From (19a), it is easy to obtain by direct calculation that

K2 � L2 �M2 � N2

� �k2
1 � l21 �m2

1 � n2
1��k2

2 � l22 �m2
2 � n2

2�: �21�
Using (18), (20) and (21), we obtain

�3 � �1�2=�
2: �22�

Thus, we have proven that in any event � in formula (3) is a

square of an odd integer. Instead of theorem 1, which deals

with rotation matrices, we can now formulate the corre-

sponding theorem for the cubic quaternions: �3 � �1�2=�
2,

where � is the greatest common odd divisor of the quaternion

produced by multiplication of two quaternions describing the

two generating CSL misorientations.

The matrix formulation can be obtained directly from the

quaternion formulation. The rotation matrix corresponding to

orthogonal quaternion (K, L, M, N) is represented by (e.g.

Korn & Korn, 1983)

1=�K2 � L2 �M2 � N2�

�
K2 ÿ L2 ÿM2 � N2 2�KLÿMN� 2�KM � LN�

2�KL�MN� ÿK2 � L2 ÿM2 � N2 2�LM ÿ KN�
2�KM ÿ LN� 2�LM � KN� ÿK2 ÿ L2 �M2 � N2

0
B@

1
CA:

�23�

Therefore, if � is the greatest common odd divisor of the

quaternion (K, L, M, N), then �2 � g:c:d:fbijg. We have left

the matrix formulation of the � combination rule in the

current paper since it allows easier extension to an arbitrary

crystal system.

Now let us return to the proof of the � theorem. From (14)

using (22), we obtain:
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�1 � �2�3=�23 � �1�
2
2=�23�

2; �24�
�2 � �1�3=�13 � �2

1�2=�13�
2: �25�

From (24) and (25), it follows that

�13 � ��1=��2; �23 � ��2=��2: �26�
Since all �'s must be integer, then �1|� and �2|�. That is, � is a

common divisor of �1 and �2.

Corollary. In the cubic system, the case is always that

�1 � pq; �2 � pr; �3 � qr; �27�
where p, q, r are positive integers.

Proof. Proof is simple: Let �12 � p2, then from Theorem 2

�1 � pq and �2 � pr, and from (6) �3 � qr.

As mentioned in x2, that three CSL misorientations

produce a common CSL has been evident to researchers

for quite some time. However, the question remains about

the reciprocal density of coincident sites, �TJ, in the triple-

junction CSL. Perevezentsev et al. (1982) found that

�TJ � max��1;�2;�3�, but they implicitly assumed that

� � 1 always for one of the boundary pairs. More recently,

Miyazawa et al. (1996) put forward a conjecture that

�TJ � ��1�2�3�1=2, but they did not offer any proof of it. The

next theorem shows how this result can be derived.

Theorem 3. �TJ theorem. Superposition of three cubic lattices,

misoriented in such a way that each pair of the lattices creates

a CSL, generates a triple-junction CSL with the multiplicity

factor

�TJ � ��1�2�3�1=2: �28�

Lemma. Consider two superimposed misoriented crystal

lattices, L1 and L2, forming a CSL with the reciprocal density

of coincident sites �. The coordinate origin is the same for L1

and L2 and is placed at a lattice site of both lattices. The

spacing between coincident sites along any rational direction x

in either of the crystal lattices is no larger than �x, where x is

the spacing between crystal lattice sites along x.

The spacing between lattice sites along any crystal direction

in L1 is de®ned by the length x of the vector x1 having three co-

prime integer components. The direction in L2, coinciding with

x1, can be determined by the vector x2 � Rx1, which has the

same length x. For a CSL misorientation R � fag=�, where {a}

is an integral matrix. Therefore, vector �x2 will always have

integer components, i.e. it ends at a lattice site of L2. This

vector also ends at a lattice site of L1, because its length is

equal to �x and there is an integer number of translations x1

within its length. Thus, this vector de®nes a coincident site of

the two crystal lattices. Of course, intermediate coincident

sites are also possible if the components of �x2 have common

divisors, but there are always coincident sites with the spacing

of �x. Moreover, since the components of {a} are co-prime

integers, it is always possible to choose x1 such that the

components of �x2 are co-prime. Thus, if the spacing of

coincident sites along all possible rational directions in the

crystal lattice is no larger than � times spacings of the crystal

lattice sites in the corresponding directions, then � is the

reciprocal density of coincident sites.

Now, returning to the main theorem, consider three super-

imposed cubic crystal lattices, L1, L2 and L3, such that each

pair of the lattices produces a CSL (grain-boundary CSL).

Denote the corresponding densities of coincident sites: �1 for

the CSL1 between L1 and L2, �2 for the CSL2 between L2 and

L3, and �3 for the CSL3 between L1 and L3. The coordinate

origin is the same for L1, L2 and L3 and is placed at a lattice

site in each of the lattices. Choose a coordinate system of L1

and a rational direction in it, x, de®ned by the vector x1 having

three co-prime integer components. Denote the length of x1 as

x. Obviously, the spacings along x of coincident sites of the

three grain-boundary CSLs are no larger than �1x, �2x, �3x,

correspondingly. A common CSL (triple-junction CSL) for all

three crystal lattices exists if there are sites common for CSL1,

CSL2 and CSL3. In the x direction, the spacing of the triple-

junction CSL sites, �TJx, must contain integer numbers of

coincident site spacings of all the three grain-boundary CSLs

in this direction. Recall from the corollary to theorem 2 that

�1 � pq, �2 � pr and �3 � qr. It is evident that

�TJ � pqr �29�
satis®es the condition of the existence of a lattice of sites

common to all three grain-boundary CSLs and, as a conse-

quence, to all three crystal lattices.

In the case �12 � 1, p � 1 and �TJ � �3 � qr. Thus, indeed,

if one of the �'s is equal to 1, �TJ � max��1;�2;�3�.
Is it possible that there exists a triple-junction CSL with a

multiplicity factor smaller than that determined by (29)?

Suppose it is so and �TJ � pqr=t, where t is a positive integer.

First, consider the case when all three grain-boundary CSLs

are not the same and do not completely coincide. For any

direction x, the ratios of the spacings �TJx=�ix must be

integers. Then, all three � values for the grain-boundary CSLs

must be divisible by t. Therefore, the triple-junction CSL of

three grain-boundary CSLs, characterized by �1, �2 and �3,

can also be produced by superposition of three grain-

boundary CSLs with �0
1 � �1=t, �

0
2 � �2=t and �0

3 � �3=t.
That would mean that three given crystal orientations could

produce a different triplet of CSLs congruent with CSL1, CSL2

and CSL3. Hence, t � 1.

In principle, however, one other case is possible where all

three ratios �TJ=�i are integer, but �TJ is not determined by

(29). This is the case when �TJ � �1 � �2 � �3. Since the

ratios �TJx=�ix must be the same for all possible directions x,

then all three grain-boundary CSLs must completely coincide

and not just have the same � values describing different CSLs.

As such, all three misorientations between the crystal lattices

must be the same and, since their sum must produce the full

rotation, they can all be described as 120� rotations about a



common axis.2 From the vector±quaternion description of

misorientations (Gertsman, 1989, 1990), it follows that a

misorientation by 120� about an axis [klm] generates a CSL

only if the following condition is met [see equation (17)

above]:

�k2 � l2 �m2�=n2 � 3; �30�
where k, l, m and n are integers.

The lowest-index3 axis satisfying this equation is [511], and

the 120� [511] rotation indeed produces the CSL with � � 9.

Fig. 1 shows three superimposed lattices with the � � 9

misorientation between each pair. One can see that in the

plane of the drawing (see Fig. 1a) every third lattice site is

common for each of the three crystal lattices. However, such a

situation takes place only in every ninth (511) plane. Each pair

of crystal lattices also has coincident sites in every third (511)

plane, but these are not common for all the three lattices (see

Figs. 1b and 1c). Hence, in this example all three grain-

boundary CSLs have � � 9, but �TJ � 27 [which, incidentally,

satis®es formula (29)]. From this consideration, it is evident

that, in general, �TJ � �1 � �2 � �3 only if the rotation axis

[klm] is perpendicular to a mirror symmetry plane in the

crystal lattice. One can easily check that (30) does not have

integer solutions for rotation axes [100] and [110]. Therefore,

the case �TJ � �1 � �2 � �3 is impossible in the cubic

system. The curious reader can check that the next (after

� � 9) 120� rotation generating a CSL is about the [751] axis,

which gives �25b. Superposition of three �25b CSLs

produces a situation similar to that with the three �9 CSLs.

Thus, we have shown that in the cubic system we always

have �TJ � pqr, which, taking into account the corollary to

theorem 2, is equivalent to (28). Other useful relationships

that follow from this one are

�TJ � �1�2

�1=2
12

� �1�3

�1=2
13

� �2�3

�1=2
23

: �31�

4. Numerical examples of a 6� 1 triple junctions in the
cubic crystal system

The relationships described in the previous section allow

calculation of any possible combination of CSL misorienta-

tions at triple junctions of crystals belonging to the cubic

system. We will not consider here trivial cases when one of the

� values is equal to 1 and the � values are related through

formula (1). Only the results for those junctions where two of

the � values do not exceed 30 are presented in the following

tables.

Table 1 gives all possible � 6� 1 triple junctions where all

three boundary misorientations can be described as rotations

about an axis common for all three crystals. Of course, in a

general case for a crystal lattice to be brought into coincidence
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Figure 1
Superposition of three misoriented simple cubic lattices. The projection
direction is [511]. Three layers of lattice sites are shown: (a) at zero
height, (b) at height 3ÿ1/2, and (c) at height 2 � 3ÿ1/2. Black circles
indicate the lattice sites common for all three crystal lattices, while gray
circles denote the lattice sites common only to pairs of the crystal lattices.

2 Excluding the trivial case �TJ � �1 � �2 � �3 � 1. This means that all
three crystal lattices completely coincide and the rotations between them are
just symmetry operations for the given crystal system.
3 Excluding [111], since 120� [111] simply describes a symmetry operation in
the cubic system.
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with itself it is not necessary that three rotations be about the

same axis. The cases when three constituent misorientations

cannot be described as rotations about a common axis are

presented in Table 2. Misorientations in Table 2 are chosen

such that �1�uvw�1 � 180� �uvw�1 and �2�uvw�2 � 180� �uvw�2.

In this case, �uvw�3 � �uvw�1 � �uvw�2 and �3 �
2���uvw�1; �uvw�2�.

It should be mentioned that relationships (27) provide only

the necessary condition, but their ful®lment is not enough for

the triple junction to be in fact possible. To ®nd whether a

certain combination can exist, it is necessary to directly check

the misorientation multiplication in the matrix, vector-

quaternion or any other form (whichever one prefers). As an

example, Table 3 lists potential combinations for the � 6� 1

triple junctions, which are impossible.

Tables 1 and 2 are somewhat similar to Table 1 of Miyazawa

et al. (1996). However, despite a certain overlap of the present

results with the result computed by Miyazawa et al., the

following differences are worth mentioning. The data in their

table were calculated for the cases when all three � values

were capped at � � 49. Also, their

choices of the grain-boundary mis-

orientation descriptions are unclear.

Besides, checking the variants with

�1, �2 > 30 shows that a couple of

possible variants are missing: �9±

�21b±�21b and �15±�21b±�35.

5. Discussion

One of the dif®culties in triple-junc-

tion studies has been the lack of

convenient and simple categorization

of such objects. Existence of the

triple-junction CSL provides a

possible means for such a classi®ca-

tion. Certainly, as with grain bound-

aries, the � description of triple

junctions may simply be a classi®ca-

tion of convenience and we are not

hinting at any link of physical prop-

erties of the junction with the magni-

tude of �TJ. Nevertheless, it is

remarkable that such a complex

object can be characterized by a single

scalar parameter.

The proposed geometric theory

allows singling out at least one class of

triple junctions, namely � 6� 1 junc-

tions. At present, we do not know how

frequent such junctions are in real

polycrystals. At least, the analysis of

Table 1 of Miyazawa et al. (1996)

shows that, if � is capped for all

constituent grain boundaries, then

� 6� 1 triple junctions quickly become

predominant among the junctions of

CSL boundaries. Of course, if �3 were kept uncapped, then

� 6� 1 triple junctions would be in the minority. However,

`rare' does not necessarily mean `unimportant'. Recently,

Owusu-Boahen & King (2000) suggested that � 6� 1 triple

junctions may have special properties, different from those of

� � 1 junctions, in particular with regard to dislocation

transmission between grain boundaries meeting at the junc-

tion. Their hypothesis is based on the consideration of the

displacement shift complete (DSC) lattice, which can be

de®ned as the coarsest lattice containing the two grain lattices

as sublattices (see e.g. Grimmer et al., 1974 and Sutton &

Balluf®, 1995). Owusu-Boahen & King have demonstrated

graphically that in � � 1 junctions the DSC lattice of the

boundary with the largest � contains DSC lattices of the other

two boundaries as sublattices.4 This is actually a corollary from

theorem 3, which shows that, when �12 � 1, CSL1 and CSL2

Table 1
�6�1 triple junctions when all three boundaries have a common rotation axis.

�1 �2 �3 �1[uvw]1 �2[uvw]2 �3[uvw]3 �1±2 �1±3 �2±3 �TJ

9 9 9 120� [511] 120� [511] 120� [511] 9 9 9 27
90� [221] 90� [221] 180� [221]

9 15 15 123.7� [321] 86.2� [321] 150.1� [321] 9 9 25 45
160.8� [531] 99.6� [531] 99.6� [531]

9 21a 21b 152.7� [410] 79.0� [410] 128.2� [410] 9 9 49 63
152.7� [322] 128.2� [322] 79.0� [322]

9 27a 27b 180� [411] 70.5� [411] 109.5� [411] 9 9 81 81
120� [511] 180� [511] 60� [511]

15 15 25a 134.4� [711] 134.4� [711] 91.1� [711] 9 25 25 75
15 15 25b 113.6� [421] 113.6� [421] 132.8� [421] 9 25 25 75

134.4� [551] 134.4� [551] 91.1� [551]
15 21a 35a 137.2� [510] 103.8� [510] 119.1� [510] 9 25 49 105
15 21a 35b 165.2� [553] 113.9� [553] 81.0� [553] 9 25 49 105
15 21b 35a 99.6� [531] 80.4� [531] 180� [531] 9 25 49 105

165.2� [731] 113.9� [731] 81.0� [731]
15 21b 35b 113.6� [421] 180� [421] 66.4� [421] 9 25 49 105

137.2� [431] 103.8� [431] 119.1� [431]
15 27a 45a 137.2� [510] 157.8� [510] 65.0� [510] 9 25 81 135
15 27a 45b 159.0� [520] 94.2� [520] 106.8� [520] 9 25 81 135
15 27b 45a 159.0� [432] 94.2� [432] 106.8� [432] 9 25 81 135
15 27b 45c 117.8� [311] 79.3� [311] 162.9� [311] 9 25 81 135

137.2� [431] 157.8� [431] 65.0� [431]
21a 21a 49a 98.2� [111] 98.2� [111] 163.6� [111] 9 49 49 147

141.8� [111] 141.8� [111] 76.4� [111]
21b 21b 49a 124.9� [441] 124.9� [441] 110.3� [441] 9 49 49 147
21b 21b 49b 124.9� [522] 124.9� [522] 124.9� [522] 9 49 49 147
21b 21b 49c 58.4� [210] 154.8� [210] 146.8� [210] 9 49 49 147

141.8� [751] 141.8� [751] 76.4� [751]
21a 27a 63b 113.9� [553] 95.3� [553] 150.8� [553] 9 49 81 189
21a 27b 63a 167.5� [911] 122.5� [911] 70.0� [911] 9 49 81 189
21b 27a 63a 144.0� [611] 114.0� [611] 101.9� [611] 9 49 81 189
21b 27b 63b 154.8� [210] 35.4� [210] 169.8� [210] 9 49 81 189

144.0� [532] 114.0� [532] 101.9� [532]
21b 27b 63c 113.9� [731] 95.3� [731] 150.8� [731] 9 49 81 189
25a 25b 25b 180� [430] 90� [430] 90� [430] 25 25 25 125
25b 25b 25b 120� [751] 120� [751] 120� [751] 25 25 25 125
27a 27a 81c 146.4� [755] 146.4� [755] 67.1� [755] 9 81 81 243
27b 27b 81a 131.8� [542] 131.8� [542] 96.4� [542] 9 81 81 243
27b 27b 81c 109.5� [411] 109.5� [411] 141.1� [411] 9 81 81 243

146.4� [771] 146.4� [771] 67.1� [771]

4 It is noteworthy that this statement was proven theoretically by
Perevezentsev et al. (1982) who thought it was generally valid since they
considered only � � 1 triple junctions.



are sublattices of CSL3. Indeed, as shown by Grimmer

(1974b), there is a ®rm relationship between the CSL and DSC

lattice. The DSC lattice is the reciprocal lattice of the CSL

formed from the reciprocal lattices of the two crystals (in the

case of the simple cubic structure the relationship is even

simpler: the DSC lattice is the reciprocal lattice of the CSL).

For � 6� 1 junctions, Owusu-Boahen & King state that `there is

no simple relationship between the DSC lattices'. This is,

actually, not completely correct. As shown in theorem 3, when

� 6� 1, the triple-junction CSL is a sublattice of all three grain-

boundary CSLs. Fig. 1 gives a graphic illustration of this

statement. The same can also be shown for less symmetrical

con®gurations. Fig. 2 displays the same example, which was

considered by Owusu-Boahen & King, i.e. a �9±�33a±�33b

triple junction. In this junction, the triple-junction CSL,

characterized by �TJ � 99, is a sublattice of all three grain-

boundary CSLs. In such cases, the DSC lattice of the triple

junction5 contains DSC lattices of all three boundaries as

sublattices (DSC lattices are not drawn in Fig. 2 not to over-

complicate the ®gure).

It certainly remains a challenge for future research to show

experimentally that � 6� 1 junctions have different properties

from other triple junctions.

6. Generalization for arbitrary crystal system

To extend the geometrical theory of triple junctions to non-

cubic crystals, let us consider what in the analyses in x3 is

general and what is speci®c only to the cubic crystal system. At

®rst glance, theorem 1 does not contain any speci®cs of the

crystal system and the � combination rule seems to be a

general one. However, this is not so. The cubic crystal system is

implied in equations (5). In the case of an arbitrary crystal

lattice, the rotation matrix of a CSL misorientation can be

represented as

R � 1

N
faijg; �32�

where N is not necessarily equal to �. As the � theorem of

Grimmer (1976) states, � is the least positive integer such that

�R and �Rÿ1 are integral matrices. Therefore, if

R � 1

N
faijg and Rÿ1 � 1

N0 faijg; �33�

then � is the least common multiple of N and N0. In the cubic

system, always N � N0 � �, but this is not always true for an

arbitrary crystal lattice. Thus, in a general case,

� � �N; �34�
where � is a positive integer.

Now, let us analyze what will change in the derivation of the

� combination rule. Instead of (10) and (11), we have

�1

�1

faijg1

�2

�2

faijg2 �
�3

�3

faijgÿ1
3 ; �35�

�1

�1

faijg1

�2

�2

faijg2 �
�1�2

�1�2

fbijg: �36�

Matrix {bij} is still calculated according to (12) and can have a

common divisor �12. Then, instead of (6), the � combination

rule is

�3 � �3�1�2=��12�1�2�: �37�
It follows from (37) that, for the � combination rule (see the

corollary to theorem 1 in x3), instead of (13), one obtains

�12�13�23 � �1�2�3=��1�2�3�: �38�
To show how the � combination rule works, let us consider

some numerical examples. Grimmer (1989) gives for a CSL

with � � 98 in the rhombohedral lattice with the axial ratio

c=a � 2:711 (which can be used to describe corundum-type

oxides) the following rotation matrices

R�98 �
1

14

18 9 8

ÿ8 1 ÿ14

ÿ4 6 12

0
B@

1
CA;

Rÿ1
�98 �

1

98

48 ÿ30 ÿ67

76 124 94

ÿ22 ÿ72 45

0
B@

1
CA:

�39�
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Table 2
� 6� 1 triple junctions when constituent grain boundaries do not have a common rotation axis.

�1 �2 �3 �1[uvw]1 �2[uvw]2 �3[uvw]3 �1±2 �1±3 �2±3 �TJ

9 21b 21b 180� [221] 180� [142] 58.4� [0�12] 9 9 49 63
27b 27b 9 180� [721] 180� [27�1] 120� [115] 81 9 9 81
15 27a 45c 180� [521] 180� [115] 130.1� [3�81] 9 25 81 135
15 27b 45b 180� [521] 180� [172] 117.1� [�1�311] 9 25 81 135
21a 21b 49b 180� [541] 180� [�2�4�1] 49.2� [0�14] 9 49 49 147
21a 21b 49c 180� [541] 180� [214] 105.4� [5�6�1] 9 49 49 147
21a 27b 63c 180� [541] 180� [217] 127.7� [9�1�1�1] 9 49 81 189
21b 27b 63a 180� [421] 180� [721] 23.0� [01�2] 9 49 81 189
27a 27b 81a 180� [511] 180� [217] 123.7� [2�1�11] 9 81 81 243
27a 27b 81b 180� [511] 180� [7�12] 38.9� [1�1�4] 9 81 81 243
27b 27b 81d 180� [721] 180� [�721] 67.1� [�17�7] 9 81 81 243

5 By analogy with grain boundaries, the triple-junction DSC lattice can be
de®ned as the coarsest lattice containing the three grain lattices as sublattices
and it is conjectured that it is the reciprocal lattice of the CSL formed from the
reciprocal lattices of the three crystals.
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Consider R3 � R1R2, where R1 � R2 � R�98. In this case,

�1 � �2 � 7 and

fbijg �
220 219 114

ÿ96 ÿ155 ÿ246

ÿ168 42 28

0
B@

1
CA;

Rÿ1
3 � 1

196

220 219 114

ÿ96 ÿ155 ÿ246

ÿ168 42 28

0
B@

1
CA;

R3 �
1

1372

214 ÿ48 ÿ1293

1572 904 1542

ÿ1074 ÿ1644 ÿ467

0
B@

1
CA:

�40�

One can see that �12 � 1, �3 � 7 and �3 � 1372 � �1�2=7,

which satis®es formula (37).

If we take R1 � R2 � Rÿ1
�98, then �1 � �2 � 1 and

fbijg � 7

214 ÿ48 ÿ1293

1572 904 1542

ÿ1074 ÿ1644 ÿ467

0
B@

1
CA;

Rÿ1
3 � 1

1372

214 ÿ48 ÿ1293

1572 904 1542

ÿ1074 ÿ1644 ÿ467

0
B@

1
CA;

R3 �
1

196

220 219 114

ÿ96 ÿ155 ÿ246

ÿ168 42 28

0
B@

1
CA:

�41�

In this case, �12 � 7, �3 � 1 and �3 � 1372 � �1�2=7, which

again satis®es formula (37).

These examples show that theorem 2 is generally not true

for an arbitrary crystal system. However, some particular

solutions are still applicable. Let �1 � �1N1, �2 � �2N2 and

Figure 2
Superposition of three misoriented simple cubic lattices giving grain-boundary CSLs �9, �33a, �33b and triple-junction CSL with �TJ = 99. The
projection direction is [110].



�3 � �3N3 [positive integers N have the meaning described by

(32) and (34)]. It is easy to show that if �12 � 1 then �13 � N2
1

and �23 � N2
2 . If N1 � pq, N2 � pr and N3 � qr [compare with

(27)], then �12 � p2, �13 � q2, �23 � r2. However, it can be

shown that in a general case of a non-cubic lattice N1 � pq,

N2 � pr and N3 � qrs (p, q, r, s are positive integers), and

�12 � p2=s, �13 � q2s, �23 � r2s. This situation corresponds to

the numerical example considered above and described by

(41).

In the above examples, (�1�2�3)ÿ1/2 is irrational, which

demonstrates that formula (28) cannot be used for calculating

�TJ. Apparently, it must be modi®ed in the following way:

�TJ � �1�2�3pqrs=g:c:d:��1�2�3�
� ��1�2�3�1�2�3s�1=2=g:c:d:��1�2�3�: �42�

This formula has been derived by considerations analogous to

the analysis in theorem 3, but has not yet been carefully

proven for the case when all three �'s are different. Hence, in

the general case it should still be considered a conjecture. The

few examples of misorientations with � 6� 1 that are known

to the author all seem to satisfy formula (42). Another

difference from the cubic system is that the case

�TJ � �1 � �2 � �3 6� 1 is possible in some lattices. For

example, consider Fig. 1(a) and assume that all the lattice

planes parallel to this one have the same projection. This

corresponds to the monoclinic lattice with c=a � 71=2 and

� � arccos�ÿ1=2 � 71=2� ' 100:9�. The lattice in Fig. 1(a) is

then viewed along [010] and the b period can be arbitrary. In

this case, �TJ � �1 � �2 � �3 � 3.
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Table 3
Combinations of CSL misorientations that cannot form triple junctions.

�9±�21a±�21a �21a±�27a±�63c �27a±�27a±�81b
�9±�27a±�27a �21a±�27b±�63b �27a±�27a±�81d
�21a±�21a±�49b �21b±�27a±�63b �27a±�27b±�81c
�21a±�21a±�49c �25a±�25a±�25a �27a±�27b±�81d
�21a±�21b±�49a �25a±�25a±�25b �27b±�27b±�81b
�21a±�27a±�63a �27a±�27a±�81a



Acta Cryst. (2001). A57, 627 V. Y. Gertsman � CSL triple junctions 627

addenda and errata

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

addenda and errata

Geometrical theory of triple junctions of
CSL boundaries. Erratum

V. Y. Gertsman

Pacific Northwest National Laboratory, PO Box 999, P8-16, Richland, WA 99352,

USA. Correspondence e-mail: valery.guertsman@pnl.gov

Owing to a typesetter's error, Fig. 2 of the paper by Gertsman

[Acta Cryst. (2001), A57, 369±377] was published with

incorrect labelling. The ®gure is reproduced here with correct

labels. Also, the misorientation referred to by the author as

�33b in the paper should be read as �33c. This is corrected in

the revised Fig. 2 given here.

Figure 2
Superposition of three misoriented simple cubic lattices giving grain-boundary CSLs �9, �33a, �33c and triple-junction CSL with �TJ = 99. The projection direction is [110].


